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Fluctuations in the general relativistic theory of fluids and 
solids 

N Salie, R Wulfert and W Zimdahl 
Sektion Physik. Friedrich-Schiller-Universitat Jena, DDR-6900 Jena, Max-Wien-Platz 1 

Received 12  April 1983 

Abstract. A formalism to describe small random fluctuations in general relativistic con- 
tinuous media is presented. I t  is based on the scheme of general relativistic irreversible 
thermodynamics and follows the lines of the non-relativistic theory of hydrodynamic 
fluctuations by Landau and Lifshitz. In a natural way Einstein’s field equations and the 
equation of motion take a form which in principle allows us to calculate the mean behaviour 
and the correlation functions of any physical quantity of the theory. As an example 
fluctuations of a long thin bar under the influence of weak gravitational fields are treated. 

1. Introduction 

In  the past decade the theoretical treatment of fluctuations in non-relativistic con- 
tinuous media became of considerable interest (Fox and Uhlenbeck 1970, Keizer 
1978, Ueyama 1980, Brenig and van den Broeck 1980, Kac and Logan 1979, Fox 
1978, van Kampen 1976). Since it yields a refinement of the usual pure phenomeno- 
logical laws of matter due to its particle structure, it may be regarded as some kind 
of link between the macroscopic and microscopic points of view. Whereas macroscopic 
laws describe a mean behaviour of a complicated many-particle system, fluctuation 
theory investigates small deviations from this mean behaviour, establishes probability 
laws and calculates correlation functions for the macroscopic variables. 

An extension of these ideas to the theory of relativity would be of interest for 
several reasons. Firstly it is of general theoretical interest, secondly one could use it 
in actual problems of cosmology and astrophysics, and finally the random fluctuations 
in experimental devices for the detection of gravitational effects could be treated 
within a closed theoretical framework rather than ad hoc as is done in most current 
investigations (Braginsky and Manukin 1974). 

On the other hand, it is well known that a satisfactory general relativistic r-space- 
statistics does not exist at present. Therefore at first glance it seems to be impossible 
to unify the concepts of general relativity with those of fluctuations of the phenomeno- 
logical quantities in a closed theoretical framework. Since the fluctuations are due to 
the particle structure of matter it is unclear how to calculate quantities like correlation 
functions and mean square values. 

Fortunately there exists the possibility of an approach to relativistic fluctuation 
problems which does not necessarily involve a relativistic many-particle theory. This 
approach is based on the ideas of the non-relativistic theory of hydrodynamic fluctu- 
ations by Landau and Lifshitz (1957,1966). The basic variables of the Landau-Lifshitz 
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theory are those of non-relativistic hydrodynamics. The theory enables us to calculate 
mean values and correlation functions of the phenomenological hydrodynamic quan- 
tities. Once derived, either by the help of probability theory (Fox and Uhlenbeck 
1970) or from non-relativistic many-particle theory (Ueyama 1980), the fluctuation 
theory works on an entirely phenomenological level. Therefore it can be regarded 
as well as an axiomatic base of a purely phenomenological theory of fluctuations. 
Taking this point of view, it will be shown that a general relativistic counterpart of 
the Landau-Lifshitz theory of hydrodynamic fluctuations can be developed. 

In the formulation of this fluctuation theory the scheme of general relativistic 
irreversible thermodynamics given by Neugebauer (1977, 1980) is extremely useful. 
Within this scheme the application of the strong equivalence principle of Einstein 
(Misner et a f  1973) to the theory of Landau and Lifshitz is possible. Moreover it 
allows a unified description of all continuous media. While the original non-relativistic 
fluctuation theory (Landau and Lifshitz 1957) is confined to hydrodynamics, the 
present paper comprehends both fluids and solids. To  our knowledge also in non- 
relativistic theory fluctuations in solids have never been treated in a corresponding 
framework. Principally it is possible to calculate correlation functions of all the matter 
quantities and the metric functions. 

The ‘fluctuational forces’ which according to Landau and Lifshitz occur in the 
linear phenomenological relations for the heat flow vector and the viscosity tensor 
respectively become components of a four-dimensional tensorial quantity being the 
fluctuational part of the energy-momentum tensor with certain correlation properties. 

The theory will be specialised to irreversible processes in relativistic fluids and 
solids. For the latter case an example of experimental interest, fluctuations in a 
somewhat idealised Weber bar in the field of a weak gravitational wave, is presented. 

2. General theory 

The essential points of the Landau-Lifshitz theory of small fluctuations are: 
( i )  adding of random terms to the linear phenomenological laws for the heat flow 

vector and the viscosity tensor, respectively; 
(ii) determination of space-time correlation functions of these random terms. 

By the help of (i) and (ii) one is able to calculate the correlation functions of all 
physical quantities of the theory, e.g. of density, pressure and temperature. 

The origin of the fluctuations can be explained only in the framework of a 
microscopic many-particle theory (Keizer 1978, Ueyama 1980, Brenig and van den 
Broeck 1980). 

A convenient starting point for a relativistically generalised method to incorporate 
small fluctuations into the phenomenological theory is the formulation of covariant 
irreversible thermodynamics given by Neugebauer (1977,1980). Neugebauer’s theory 
is based on a field theoretical variational principle that calculates the density of the 
entropy production (+ in the general form 

( S ‘  is entropy current density, L the Lagrangian of the irreversible system (see below), 
g = det/gik/,  VA is a set of independent covariant state variables (metric gik included), 
S/SVA is the variational derivative, Y is the Lie derivative with respect to a time-like 
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vector field t ’=u’ /T  (Tolman’s temperature vector), U ’  is the four-velocity and T 
the temperature). In (1) the sets 

( J A )  = ( - ( ~ A / G ) ( S L J ~ / S V A ) )  (2) 

and 

play the role of generalised thermodynamical currents and forces, respectively ( k ~  
is a constant chosen for convenience). According to Onsager these are connected by 
linear relations 

JA = 1 LA&B 
B 

(LAB are kinetic coefficients). 
In general not all of the XA and J A  respectively are independent. Further one 

should point out that the above separation of U is not unique but a matter of 
convenience. 

In spirit of Landau and Lifshitz we introduce small fluctuations by adding random 
terms !A to the relations (4) which now are replaced by 

B 

In a simplest case of Gaussian processes only the first two correlation functions of . f~ 
are of importance: 

(?A) = 0, (6) 

( ? ~ ( X ) j g ( . f ) )  = ~ ~ C Q A B ~ ~ ( X ,  2 )  (7) 

guaranteeing that the mean behaviour of the system is governed by (4), and 

(k is Boltzmann’s constant, c the velocity of light, x = (XI, . . , , x4) ,  (. . .)is the ensemble 
average, S4(x, 2 )  the four-dimensional covariant &function). 

Equation (7) is a result of the well known procedures to obtain general relativistic 
laws of continuous media by the help of the strong equivalence principle (Misner et 
a1 1973). Because the correlations are given by interactions in the atomic and 
molecular range this principle is applicable in the present case as well as in the whole 
theory of continuous media. 

The 6- function-like behaviour of the second-order correlation functions of the 
non-relativistic theory both in space and time makes this straightforward generalisation 
reasonable. The quantities Q A B  turn out to be dependent on L A B .  Examples will be 
given below. The general relations (5)-(7) are applicable to fluids and solids, including 
media with complicated internal structure like superconductors. 

3. Fluctuations in hydrodynamics 

For one-component isotropic fluids we take as independent variables VA the metric 
tensor g i k ,  the invariant temperature T, and the particle number density p (mole/cm3). 
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The Lagrangian L in (1) reads (Neugebauer 1977, 1980) 

L =  -R/2xo+pf(T9p) (8) 

( R  is the curvature invariant, xo Einstein's gravitational constant, f (T ,  p )  the molar 
free energy). 

Now U becomes from (1 

U = - +[(RIk - k g ' k R ) / X g -  ? ' k ] y g l k  - ( p u ' ) , l F / T  3 0 .  

? I k  = pe u ' u  k / c 2  +phlk 

(9) 

(10) 

is the reversible part of the energy-momentum tensor for fluid media (RIk is the Ricci 
tensor, e the molar internal energy, the chemical potential, p the pressure, h t k  = g C k  + 
u L u  k / c 2  the spatial metric of a comoving observer). 

Because of the conservation of the particle number the term containing ( P U ' ) , ~  in 
(9) can be omitted (Neugebauer 1977, 1980). The only independent thermodynamical 
forces-containing in a covariant manner both internal friction and heat conductivity- 
are -22?(gIk. 

E 

1 

Now ( 5 )  takes the concrete form ( k A  = -2) 

with (Neugebauer 1977, 1980) 
L'k'm = r lT (h"h  k m  + h"h k f )  + (( - gr l )Thzkh  I m  

+ ( X T 2 / c 2 ) ( h ' l u k u m  + h k m u l u I  + h l m u k u f  + h k l ~ ' ~ m ) .  (12) 

q, ( and x are the coefficients of shear viscocity, bulk viscosity and heat conductivity, 
respectively. 

The RHS of (11) is the irreversible part of the energy-momentum tensor including 
the random fluctuations TIk. 

In this framework Einstein's field equations naturally become 

RIk -igLkR = x o ( T t k  + f l k )  x o T &  (13) 

with the equations of motion 

T:Zt , k  E ( TIk + f I k ) , k  = 0. (14) 

TIk corresponds to the usual energy-momentum tensor for fluids including irreversible 
processes 

T l k  = F I k  _ _  :L'k'm 2? glm. 
5 

Ti:, can be decomposed with respect to the four-velocity: 

T &  = ( p e / c 2 ) u ' u k  + c - ' q ' u k / c  + c - ' q k u ' / c  + t i k  

( q  is the heat flow vector, s l k  = - t l k  the stress tensor, 
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(A contribution proportional to u ' u k  does not occur because the rest mass conservation 
and the non-relativistic limiting behaviour exclude this possibility.) From ( 1  l ) ,  ( 1 5 ) ,  
and (16)  we get 

(18)  ik - - -277u'k + $ k ,  

7T - p  = -50 + G ,  

q = - x e  + G ,  k k k  

with shear 

expansion 

The correlation functions of G i k ,  7; and G k  can be determined in analogy to the 
non-relativistic theory, Using the principle of equivalence we obtain (Wulfert 1982): 

( $ k )  = (4) = ( G k )  = 0, (24)  

(7;ik(~)Gfm(f))=2k~Tv(hifhkm +h"hkf -?hikhfm)S4(x,  X ) ,  (25)  

( 7 j ( x ) G ( f ) )  = 2kcT[S4(x, X), (26)  

( q k ( x ) 4 ' ( X ) )  = 2kcT2xS4(x, i ) h k f ,  (27)  
(7;ikG) = ( 7 ; i k s " )  = ( 6 4 ' k )  = 0. (28)  

(For a more detailed justification in the case of gases by the help of relativistic kinetic 
theory see Zimdahl (1983).)  

Equations (13)-(28) are the basic formulae of relativistic hydrodynamic fluctuation 
theory. One easily verifies that the non-relativistic relations of Landau and Lifshitz 
follow as a limiting case. 

To obtain the correlation functions of the physical quantities (U i, p, . . .) from 
(24)-(28) one proceeds as follows (Landau and Lifshitz 1978). The quantities Gik ,  G k  
and 6 are regarded as known space-time functions. The equations of motion (14)  
are formally solved. Thus the physical quantities become linear functionals of the 
Gik ,  G and 4k  and any quadratic or bilinear form of the (u i ,  p, . . .) is expressible by 
quadratic or bilinear functions-1s of G i k ,  7i and ek.  Using (24)-(28) the averaging 
procedure yields the desired results. 

4. Fluctuations in solids 

In this section the general theory is applied to a general relativistic solid. The 
Lagrangian in ( 1 )  is given by 

(29)  L = -R/2Xo+Pf(Eik, h", T ) .  
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The molar free energy f is a function of the deformation tensor &ik and the temperature 
T. The spatial metric h ik of a comoving observer enters because f is an invariant. In 
close analogy to (9) the explicit calculation of (1) provides 

U = - $ [ ( R i k - - g i k R ) / ~ O - f i k ] ~ g i k  3 0 .  (30) 

f i k  = (pe / c2 )u iuk  - s &  (31) 

t 

The reversible part f i k  of the energy-momentum tensor is now given by 

with the elastic stress tensor s$, 

s$,, = p ( a f / a C i k  --Ei,af/aerk --E kraf /a&, i ) .  
Following the general line of the theory ( 5 )  now results in 

(R ik  -$g ikR) /XO-  f i k  = Lf:f"( - i 2g fm)  + Fik (33) 
6 

which formally coincides with (11). 
In most cases one can consider the molar internal energy e as a Taylor expansion 

with respect to & i k .  For small deformations e reduces to a quadratic form. Treating 
a simple solid with only two elastic and two viscosity coefficients (A, p ; 71, ~ I I )  we get 

(34) 

(35) 

e = e o + p i k e i k  + ( A / ~ ) ( E , ' ) ~ + .  . . , 
s &  = 2Ge ik  + i h  ', +. . . (& = p p ,  f i  = p h ) .  

With the tensor of the phenomenological coefficients (Wulfert 1982) 

L;;f"=qIT(hi'hk" +h"hk')+qIITh'kh" 

+ (16T2/C4)(h i f U k U  " + hkmu iu ' + h imUkU + h k'U $4 "), (36) 

the appropriately split fluctuational tensor Ti' 
Ti& = C - 2 ( 4 i U k  + ~ k ~ i ) - ; i k  

7 

and (21)-(23) we arrive at 

s(vix) ik = 2771(Uik +4@hik)+q11@hik +gik ,  

q k  = - x h  k f  (T,I + TLif/C2) + G k ,  
with the correlation properties 

( $ i t )  = ( G k )  = 0 

( $ i k $ )  = 0, 

(iik(x)s""(f)) = 2kTc[qI(hi'hk" + 
(gi(x)Gk(f)) = 2kT2cxhiks4(x, f), 

in close analogy to the case of a fluid. 
The equations of motion now are 

Tizt;k =(Ti' + f i k ) ; k  = 0 

imh k ' )  + i k  

(37) 

(38) 

(39) 

(44) 
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with 

T;Et = ~ i k + L f ~ f m ( - : ~ ~ g l m ) + ~ i k  
5 

=(pe/C2)UiKk -S& -S f t f isc )  +(qiUk f q k U i ) / C 2 .  (45) 

Equations (33)-(45) are all the equations we need for treating random fluctuations 
in simple solids. 

5. Fluctuations in a long thin bar 

As an application of the developed method we calculate the fluctuations of an idealised 
Weber bar. In a previous paper (Giinther and Salie 1978) a differential equation for 
the oscillations of such a bar in the field of a gravitational wave was derived and 
Fourier expansion solutions for special initial value problems were presented. Here 
we extend these calculations to include small random fluctuations. 

The material of the bar is assumed to be insulating (sapphire, glass) so that we 
can neglect heat conductivity. As a result we shall get the correlation functions for 
the displacement vector in the field of a gravitational wave and in the static earth 
field. The non-relativistic part of the correlation functions, which to our knowledge 
also has never been calculated in a corresponding framework, provides the usual 
noise. The additional terms due to the influence of the gravitation are of the order 
of magnitude of the gravitational fields and are negligible in most cases. 

Therefore the measurability of the general relativistic first-order effects is restricted 
by the non-relativistic classical fluctuations. This is the result of an exact general 
relativistic theory. 

The gravitational field consists of two parts, a static one, f:it) (field of the earth) 
and a time-dependent one, f!;) (wave): 

g i k  = r) ik  + f i k 7  (46) 

f j k  = f ~ ~ t ’ ( X Y ) + f j ~ ) ( X Y ,  t )  (47) 
(Greek indices: 1-3). 

The deformations and oscillations due to the gravitational fields are small. Other 
possible oscillations are considered to be small, too. The deformation tensor obeying 
compatibility relations has the form (Hernandez 1970, SaliC 1976) 

(48) 

The z ‘” ’ (x” ,  t )  are three functions given e.g. by the initial values of the problem. In 
a suggestive picture they may be regarded as flat space coordinates in an idealised 
stress free state. 

For small deformations due to the gravitational fields one can choose coordinates 
x u  which differ only by a small amount d” from z ( ~ )  (Gunther and SaliC 1978) 

(49) 

&ik =z(hik 1 -hiE’)ri(hik -2 , j  ( U )  z,k (U) ). 

x u  = Z ( P ) + d U ,  

ci& then takes the form 
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In the weak field approximation d, plays the role of the displacement vector of the 
classical theory of elasticity. 

Linearising (44) with respect to fik and d, provides the following differential 
equations with fluctuations: 

In the following only the time-dependent part of da needs to be considered. The 
correlation relations of fUp are determined by (40) and (42), resulting in 

x{[.~~I(~apswu + ~ u w ~ p u ) +  v I I s , ~ s ~ , I ( ~ - ~ ~ ~ )  

+ q1(SaafFu + Swvfup + a a f p v  + Spvfa,) + qII(SaufBw + S s C f a v ) ) .  

(p;) +s$=))qB = 0 ( 5 5 )  

u'ni=O and n ' n i = l .  (56)  

(54) 

In our approximation the boundary conditions read (Wulfert 1982) 

with the normal vector n ' obeying 

The idealisation of a long thin bar with length 1 in the x '  direction simplifies the 
system of differential equations (52). By integration over the cross section F of the 
bar one defines mean quantities, e.g. 

&(x' ,  t )  = F-' d,(xl, x2 ,  x3 ,  t )  dx2 dx3. (57) 

The linearity of (52) makes this integration possible and yields (using (55)) for the 
case of a Z T -  gauged gravitational wave 

& (26 + 3i)di, i , i  + [v1(4& + 3 i )  + 3t711&Idi,i,i,t + 7/1(2~1+ ~ 7 ? 1 1 ) ~ 1 , 1 , 1 , t , t  

I IF 

- (poeo/c2)(& + i)dl,,,, - (poeo/c2)(m + mI)dl,r,r.r 

= -(& + i ) f i i , i - ( q I + q I I ) ~ i i , i , f  + % A A . i + i q I I ~ ~ A , i , r  ( 5 8 )  

(bars again omitted, dl = dl(x ', t ) ,  A,  B = 2, 3; P O  = constant density in an initial state, 
free of deformation). 

Now da is expanded in a Fourier series with respect to x ' and in a Fourier integral 
with respect to t. A similar expansion is made for the random stress fluctuations 
averaged in analogy to (57). With (53) and (54) one gets algebraic relations between 
the expansion coefficients (Wulfert 1982). 

If the gravitational wave has the form 
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(P, 0 are constant, f is the wavenumber, R is the angular frequency), the correlation 
functions of the displacement vector are (Wulfert 1982) (xl  = x )  

(dl(X, t ) )  = 0, (60) 

(dl(x, Odl(x‘, t ’ ) )  

k T  +w k: 
n = o 7 r F l  --a3 v = C - 5 dw 7 cos[kn(x -x‘)] exp-iw ( t  - t’)].  

E2 = (2771 + 77II)T; +7717?11(4771+ 3711). 

Xi(t ’ )  = Pai cos(Rt‘-Si)+Qpi sin(Rr’-xi). ai, pi, Si and xi are coefficients consisting 
of a, F, A, &, qI and 7711 (see Wulfert 1982). 

The first term in the braces of the integral in (61) yields the main contribution to 
the correlation function of d l(x, r ) .  This is the classical non-relativistic contribution. 
The second and third terms are generated by the gravitational wave and by the static 
field, respectively. In general they are completely negligible. Nevertheless the calcula- 
tions leading to this result are of importance for the following reasons. Firstly, from 
a completely general relativistic theory it has been shown that the non-relativistic 
fluctuation formulae usually introduced ad hoc into the theory of gravitational experi- 
ments are justified indeed in the weak field approximation. These classical fluctuations 
provide the limit for the detectibility of the first-order general relativistic effects. 
Secondly a method is presented which allows us to calculate relativistic corrections 
to classical correlation functions. This may be of importance in superdense matter in 
the fields of cosmology and astrophysics. 

The integration with respect to w in (61) can be carried out in the complex w-plane 
and we get simple algebraic but rather lengthy formulae (Wulfert 1982), which are 
investigated for two cases. First we consider an experiment of the Weber type in a 
satellite (no static earth field) and assume small viscosity coefficients (high quality 
factor). The ratio between the relativistic and the non-relativistic correlation functions 
is 

&(x, t)dl(x’, f’))rel 

(di(x, t)di(x‘, 0) 
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As expected the corrections due to the gravitational wave are of the order of its 
magnitude and therefore negligible in most of the interesting cases. 

As a realistic example we calculate the non-relativistic correlation function for a 
bar of a Weber-type experiment in a laboratory on the earth. We consider a bar with 
length / = 100 cm, cross section F = 1 cm2, mass density poeo /c2  = 2.7 g/cm3, tem- 
perature T = 4.2 K and elastic and viscous constants & = 27.24 x 10" g/cm s2, i = 
57.88 x 10" g/cm s2, qI = 1.38 x g/cm s. The series in 
(61) converges. The first coefficients are proportional to l / n2 .  For n > lo7 there are 
deviations but these terms are too small to influence the result. In this case we get 
as a good approximation for the mean square value 

g/cm s, qII = 1.38 x 

1 kT1 1 1 k T l  ( d l ( x ,  t ) 2 )  =- - 2 - - - - = 1,323 43 
r 2  FE n 2 -  6 FE cm2, 

Direct numerical valuation of (61) by the help of a precise computer program 
yields the same result. By this program one also shows that a change of qI and qII 
has only a small influence on the result. For q1 = lo6 (qI)old and qII = 0.5 x lo6 (ql)old 
one obtains (d(x,  t ) ' )  = 1.323 55 x cm2. This is a deviation of about 0.1%. 

6. Harmonic oscillator approach 

19 the theoretical treatment of gravitational experiments a bar is often idealised as a 
harmonic oscillator (Misner et a1 1973) with the Hamiltonian 

&p = (2m)-'p2 + $ k j 2 ,  

In this case the mean square fluctuations can be calculated very simply by the help 
of the non-relativistic equipartition theorem: 

From Hooke's law 

KIF = I ? ( A l ) / l  (66) 

(K is force, I? Young's modulus, F the cross section, AI the displacement) the coupling 
constant k ,  can be determined: 

(67) k, = K/ AI = I?F/l. 

For the mean square value f we get 

f = k T l / & .  

Comparing the results (64) and (68), we conclude that the rough estimations (65)-(68) 
provide the correct order of magnitude. 

The calculations leading to (64) may serve as a justification for using the harmonic 
oscillator approach for bars in gravitational experiments. 
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